## ODPYLANIE SPALIN KOTŁOWYCH Z RÓWNOCZESNYM ODSIARCZANIEM METODĄ MOKRĄ WAPIENNĄ

<sup>1</sup>Michał GŁOMBA, <sup>2</sup>Jerzy MAZUREK <sup>1</sup>Zakład Naukowo-Dydaktyczny Ochrony Atmosfery Instytutu Inżynierii ochrony Środowiska Politechniki Wrocławskiej Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, <sup>2</sup>RAFAKO Spółka Akcyjna ul. Łąkowa 33, 47-400 Racibórz <u>michal.glomba@pwr.wroc.pl, jerzy.mazurek@rafako.com.pl</u>

#### STRESZCZENIE

W pracy przedstawiono efekty dwustopniowego odpylania spalin emitowanych z kotłów pyłowych – w elektrofiltrze suchym, a następnie w absorberze instalacji odsiarczania spalin według mokrej metody wapiennej. Zwrócono uwagę na wpływ skuteczności odpylania spalin w elektrofiltrze na jakość (skład chemiczny i białość) produktu odsiarczania – gipsu syntetycznego. Od jakości zależy jego przydatność do gospodarczego wykorzystania. Z tego względu należy dążyć do możliwie najskuteczniejszego odpylania spalin w elektrofiltrze, ponieważ daje to gwarancję na otrzymanie gipsu o małym lub znikomym zanieczyszczeniu cząstkami mineralnymi, wnoszonymi wraz ze spalinami w postaci najdrobniejszych cząstek popiołu lotnego do absorbera. Opracowano równanie opisujące zależność odpylania spalin w absorberze IOS od ich prędkości w aparacie, wartości stosunku L/G i pH zawiesiny absorpcyjnej, wysokości strefy zraszania spalin w absorberze, liczby włączonych poziomów zraszania w absorberze, stężenia pyłu w spalinach na wlocie do aparatu, gęstości zawiesiny absorpcyjnej oraz temperatury spalin przed absorberem.

#### 1. Wprowadzenie

Odsiarczanie spalin wg metod mokrych (np. metody wapiennej), poprzedzone jest ich odpylaniem w elektrofiltrze. W tym przypadku, w odróżnieniu od metod suchych i półsuchych, efektywność procesu odsiarczania spalin nie wpływa na skuteczność ich odpylania w elektrofiltrze [1]. W absorberze instalacji odsiarczania spalin (IOS) metodą mokrą wapienną zachodzi, wraz z absorpcją SO<sub>2</sub>, HCl i HF, równoczesne ich odpylanie na kroplach rozpylonej cieczy absorpcyjnej, co w znacznym stopniu zwiększa całkowitą skuteczność odpylania spalin przed wyrzutnią kominową.

Wydzielone na kroplach cieczy cząstki pyłu gromadzą się w zbiorniku cieczy pod absorberem i w wyniku pobierania tej cieczy do węzła odwadniania gipsu znajdują się w końcowym produkcie odsiarczania spalin, jakim jest gips syntetyczny (rys. 3). W ten sposób gips w mniejszym lub większym stopniu, zależnym od skuteczności odpylania spalin w elektrofiltrze i w absorberze, zostaje zanieczyszczony nierozpuszczalnymi w zawiesinie absorpcyjnej składnikami popiołów lotnych. Wpływa to na jakość gipsu (zawartość zanieczyszczeń stałych i białość gipsu) i przez to syntetyczny gips może znacznie odbiegać swoimi parametrami od wymagań stawianych mu przez jego odbiorcę, który wykorzystuje go w produkcji materiałów budowlanych (np. płyt kartonowo-gipsowych).

W pracy przedstawiono efekty dwustopniowego odpylania spalin w elektrofiltrze i w absorberze IOS w warunkach obiektowych. Scharakteryzowano również wpływ parametrów pracy absorbera na skuteczność odpylania spalin.

# 2. Skład ziarnowy popiołu lotnego unoszonego z kotłów pyłowych po spaleniu węgla brunatnego

Charakterystykę granulometryczną popiołów powstających po spalaniu węgla brunatnego w kotłach pyłowych przedstawiono na rys. 1 i 2. Na krzywej ziarnowej (rys. 1) można odczytać średnicę medialną (medianę)  $d_m = d_{50}$ , która dzieli masę cząstek pyłu na dwie połowy. Dla uziarnienia pyłu przedstawionego na rys. 1 średnica medialna  $d_m = 10 \,\mu$ m,

Drugą charakterystyczną średnicą cząstek pyłu jest średnica dominanta (modalna)  $d_M$ , odpowiadająca maksimum krzywej na rys. 2, czyli średnica cząstek pyłu, których masa w całym zbiorze jest największa. Dla zbioru cząstek o uziarnieniu podanym na rys. 1 średnica modalna  $d_M = 15 \mu m$ .



Rys. 1. Zależność skumulowanego rozkładu masowego cząstek popiołu lotnego od ich średnicy (opracowano na podstawie [2])

Udział masowy cząstek popiołu o średnicy  $d_M = 15 \ \mu m$  w przedstawionym zbiorze wynosi 22,75%.



Rys. 2. Zależność masowego rozkładu cząstek popiołu od ich zastępczej średnicy (opracowano na podstawie [2])

# **3.** Skład chemiczny lotnych popiołów unoszonych z paleniska pyłowego po spaleniu węgla brunatnego

Skład chemiczny popiołów paleniskowych zależy od rodzaju spalanego węgla, ilości i rodzaju zawartych w nim części niepalnych (mineralnych) oraz parametrów technicznych kotła i zastosowanej techniki spalania. W krajowej literaturze informacje na temat składu chemicznego popiołów ze spalania węgla brunatnego są bardzo rozbieżne. Skład popiołów pochodzących ze spalania węgli brunatnych dostarczanych z największych polskich kopalń podano (według [3]) w tabeli 1.

| Symbol                         |           | Popiół ze spalania węgla brunatnego z kopalni |         |       |  |  |
|--------------------------------|-----------|-----------------------------------------------|---------|-------|--|--|
| chemiczny                      | Jednostka | Bełchatów                                     | Turów   | Konin |  |  |
| SiO <sub>2</sub>               | % mas.    | 45,38                                         | 41-50   | 30-50 |  |  |
| Al <sub>2</sub> O <sub>3</sub> | % mas.    | 19,26                                         | 25-35   | 5-9   |  |  |
| Fe <sub>2</sub> O <sub>3</sub> | % mas.    | 4,95                                          | 14-20   | 4-6   |  |  |
| CaO                            | % mas.    | 19,78                                         | 2-4     | 25-48 |  |  |
| MgO                            | % mas.    | 0,73                                          | 0,1-1,0 | 2-4   |  |  |
| Na <sub>2</sub> O              | % mas.    | 0,16                                          | 0102    | áladu |  |  |
| K <sub>2</sub> O               | % mas.    | 0,32                                          | 0,1-0,5 | slauy |  |  |
| SO <sub>3</sub>                | % mas.    | 5,93                                          | 0,5-0,7 | 5-10  |  |  |
| Straty prażenia                | % mas.    | 2,28                                          | 1-3     | 2-6   |  |  |

Tabela 1. Skład chemiczny popiołów pochodzących ze spalania krajowych węgli brunatnych [3]

## 4. Skład chemiczny gipsu syntetycznego

Odsiarczanie spalin kotłowych metodą mokrą wapienną polega na kontaktowaniu spalin surowych w absorberze z zawiesiną zmielonego wapienia przy utrzymaniu w węźle absorpcji jej wartości pH w zakresie 5,0-5,6. Zachodzi w tym czasie rozpuszczanie w wodzie SO<sub>2</sub> i CaCO<sub>3</sub> oraz reakcja między jonami  $HSO_3^-$  i  $Ca^{2+}$  z wytworzeniem siarczynu wapnia (CaSO<sub>3</sub>), który w wyniku napowietrzania zawiesiny absorpcyjnej w rząpiu utlenia się do dwuwodnego siarczanu wapnia (CaSO<sub>4</sub>·2H<sub>2</sub>O) zwanego gipsem syntetycznym. Najczęściej gips syntetyczny charakteryzuje się składem chemicznym podanym w tabeli 2.

| Parametr                             | Zawartość | Bilans                                                                             |
|--------------------------------------|-----------|------------------------------------------------------------------------------------|
|                                      | % mas.    |                                                                                    |
| SiO <sub>2</sub>                     | 2,0       |                                                                                    |
| Fe <sub>2</sub> O <sub>3</sub>       | 0,0       |                                                                                    |
| Al <sub>2</sub> O <sub>3</sub>       | 0,4       |                                                                                    |
| $Mn_3O_4$                            | 0,0       |                                                                                    |
| TiO <sub>2</sub>                     | 0,02      |                                                                                    |
| CaO                                  | 31,5      |                                                                                    |
| MgO                                  | 0,22      | $CaCO_3 = 0,06\%$                                                                  |
| SO <sub>3</sub>                      | 44,9      | $CaSO_3 \cdot \frac{1}{2}H_2O = 0.97\%$                                            |
| P <sub>2</sub> O <sub>5</sub>        | 0,0       | $Ca(OH)_2 = 0.0\%$                                                                 |
| Na <sub>2</sub> O                    | 0,01      | $CaSO_4 \cdot 2H_2O = 96,27\%$                                                     |
| K <sub>2</sub> O                     | 0,05      | $CaCl_2 = 0.01\%$                                                                  |
| Cl                                   | 0,005     | $CaF_2 = 0.01\%$                                                                   |
| F                                    | 0,05      | $\Sigma$ awartose skiadnikow obojętnych<br>(SiO + Al O + E <sub>2</sub> O ): 2 30% |
| Strata prażenia w 900 °C             | 20,0      | $(310_2 + A1_20_3 + 12_20_3)$ . 2,3970                                             |
| Razem                                | 99,1      |                                                                                    |
| Wolne CaO                            | 0,0       |                                                                                    |
| Fluorki rozpuszczalne                | 0,005     |                                                                                    |
| Siarczyny jako SO <sub>3</sub>       | 0,48      |                                                                                    |
| Siarczany jako SO <sub>4</sub>       | 53,15     | 1                                                                                  |
| Potas rozpuszczalny K <sub>2</sub> O | 0,002     |                                                                                    |
| Węglany jako CO <sub>2</sub>         | 0,03      |                                                                                    |
| Magnez rozpuszczalny jako MgO        | 0,013     |                                                                                    |
| Chlorki rozpuszczalne                | 0,005     |                                                                                    |
| Białość                              | 82 %      |                                                                                    |

Tabela 2. Skład chemiczny gipsu syntetycznego

Tworzący się gips syntetyczny jest zanieczyszczony cząstkami mineralnymi, stanowiącymi nierozpuszczalny balast kamienia wapiennego, oraz popiołów lotnych usuwanych ze spalin w absorberze na kroplach rozpylonej cieczy absorpcyjnej. Aby gips ten charakteryzował się parametrami pozwalającymi wykorzystywać go w produkcji materiałów budowlanych (np. płyt kartonowo-gipsowych), jego skład chemiczny powinien spełniać dokładnie określone warunki. Tylko wtedy zakłady produkcji materiałów budowlanych wykazują zainteresowanie jego zakupem.

Uzyskanie ustalonych przez odbiorców i gwarantowanych przez projektanta IOS parametrów gipsu syntetycznego polega na odpyleniu surowych spalin kotłowych w wysoko sprawnych elektrofiltrach ( $\eta \ge 99,5\%$ ) i stosowaniu w procesie odsiarczania spalin wapieni o dużej zawartości CaCO<sub>3</sub> (nie mniej niż 95%) oraz małej zawartości SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub> i Fe<sub>2</sub>O<sub>3</sub>. Znaczenie tego problemu jest bardziej widoczne, jeśli porówna się zawartość tych tlenków w popiołach lotnych (tabele 1 i 4) i w gipsie syntetycznym (tabela 2).

### 5. System oczyszczania spalin w elektrowni opalanej węglem brunatnym

W dalszej części niniejszej pracy podano informacje dotyczące odpylania i odsiarczania spalin w jednej z krajowych elektrowni spalającej węgiel brunatny. Paliwem gwarancyjnym jest węgiel brunatny o parametrach fizycznych i składzie chemicznym podanych w tabeli 3.

| Parametr              | Jednostka         | Wartość   |
|-----------------------|-------------------|-----------|
| Wartość opałowa       | kJ/kg             | 8583,0    |
| Wilgotność            | % mas. paliwa     | 53,5      |
| Zawartość popiołu     | % mas. paliwa     | 9,5       |
| Części palne          | % mas. paliwa     | 34,2      |
| Części lotne          | % mas. paliwa     | 21,5      |
| Siarka palna (ogółem) | % mas. paliwa     | 0,8       |
| Chlor w węglu         | % mas. paliwa     | 0,012     |
| Fluor w węglu         | % mas. paliwa     | 0,01      |
| Ksylity (ogółem)      | % mas. paliwa     | 6,0       |
| Ksylity kruche        | % mas. paliwa     | 5,0       |
| Piasek                | % mas. paliwa     | 1,0       |
| Gęstość usypowa       | kg/m <sup>3</sup> | 750 - 800 |

Tabela 3. Parametry węgla brunatnego spalanego w wybranej elektrowni krajowej

Z przeprowadzonych analiz popiołu pobieranego ze spalin za kotłami wynika, że charakteryzuje go skład chemiczny podany w tabeli 4.

Tabela 4. Skład chemiczny popiołów z krajowej elektrowni

| Związek chemiczny              | Jednostka | Wartość średnia | Zakres wartości |
|--------------------------------|-----------|-----------------|-----------------|
| SiO <sub>2</sub>               | % mas.    | 33,5            | 12 - 78         |
| Fe <sub>2</sub> O <sub>3</sub> | % mas.    | 9,30            | 6,5 - 10,9      |
| $Al_2O_3$                      | % mas.    | 5,80            | 1,1 - 5,8       |
| CaO                            | % mas.    | 21,80           | 8,7-35          |
| MgO                            | % mas.    | 2,10            | 1,4 - 7,7       |
| SO <sub>3</sub>                | % mas.    | 26,9            | 2,5 - 33        |
| K <sub>2</sub> O               | % mas.    | 0,16            | 0,04 - 0,3      |
| Na <sub>2</sub> O              | % mas.    | 0,10            | 0,09 - 0,17     |
| $P_2O_5$                       | % mas.    | 0,12            | 0,04 - 0,13     |
| Mn <sub>3</sub> O <sub>4</sub> | % mas.    | 0,18            | 0,07 - 0,24     |

Spaliny te oczyszcza się w instalacji, której schemat podano na rys. 3. Odpylanie spalin surowych zachodzi w elektrofiltrach suchych wielopolowych typu HKE, a odsiarczanie spalin odciąganych z kotłów nr 1-4 w instalacji IOS z dwoma absorberami. Parametry pracy IOS podano w tabeli 5.

| Parametr techniczny                           | Jednostka                            | Wartość     |
|-----------------------------------------------|--------------------------------------|-------------|
| Ilość bloków                                  | szt.                                 | 4           |
| Moc bloków                                    | MW <sub>e</sub>                      | 4×200       |
| Liczba absorberów                             | szt.                                 | 2           |
| Strumień objętości spalin surowych            | m <sup>3</sup> <sub>n</sub> /h wilg. | 2×2100000   |
| Temperatura spalin przed IOS                  | °C                                   | 180         |
| Temperatura spalin za IOS                     | °C                                   | 65          |
| Stężenie SO <sub>2</sub> w spalinach surowych | $mg/m_{n}^{3}$                       | 4000 (max.  |
| Skuteczność odsiarczania spalin               | such.                                | 6170)       |
| Stężenie popiołu w spalinach surowych         | %                                    | > 96,7      |
| Skuteczność odpylania spalin w elektrofiltrze | $g/m_n^3$ wilg.                      | 40          |
| Stężenie pyłu w spalinach przed IOS           | %                                    | 99          |
| Skuteczność odpylania spalin w absorberze     | mg/m <sup>3</sup> <sub>n</sub> wilg  | 400         |
| Zużycie sorbentu (CaCO <sub>3</sub> )         | %                                    | Brak danych |
| Zużycie wody                                  | Mg/h                                 | 22,2        |
| Strumień masy produktu odsiarczania spalin    | m <sup>3</sup> /h                    | 374         |
| (gipsu)                                       | Mg/h                                 | 19,1        |
| Dyspozycyjność IOS                            | %                                    | > 97        |

Tabela 5. Parametry techniczne (projektowe) IOS (dot. elektrowni krajowej)



#### Rys. 3. Schemat instalacji odpylania i odsiarczania spalin kotłowych:

1 – wentylator ciągu spalin kotłowych, 2 - dmuchawa powietrza utleniającego siarczyny, 3 - silos zmielonego kamienia wapiennego, 4 – zbiornik zawiesiny wodnej sorbentu, 5 – hydrocyklon zagęszczania zawiesiny gipsu, 6 – hydrocyklon wydzielania ścieków, 7 – taśmowy filtr próżniowy, 8 – zbiornik zawiesiny gipsu, 9 – zbiornik wody procesowej, 10 – zbiornik filtratu, 11 – zbiornik wody do przygotowania świeżej zawiesiny sorbentu, 12 –

zbiornik ścieków surowych, 13 - zbiornik wody do płukania placka filtracyjnego i taśmowych filtrów próżniowych, K1...K6 – numery kotłów, ABS.1 i ABS.2 – absorbery IOS

#### 6. Odpylanie spalin w elektrofiltrze

Na skuteczność odpylania spalin w absorberze IOS i stopień zanieczyszczenia produktu ich odsiarczania (syntetycznego gipsu) duży wpływ, oprócz zawartości składników mineralnych w popiołach i ich składu chemicznego, ma skuteczność procesu odpylania w elektrofiltrze. W celu przedstawienia efektu suchego odpylania spalin w elektrofiltrze przyjęto, że średnie stężenie pyłu w spalinach za kotłem wynosi ok. 40 g/m<sup>3</sup><sub>n</sub> spalin wilgotnych (wartość średnia dla kotłów pyłowych).

Na podstawie analizy danych literaturowych ustalono i przyjęto do dalszych rozważań, że skład frakcyjny pyłu w spalinach przed elektrofiltrem i przedziałowa (frakcyjna) skuteczność odpylania w elektrofiltrze przyjmują wartości podane w tabeli 6 oraz na rys. 1 i 2. Na podstawie tych danych obliczono stężenia frakcyjne, skuteczność całkowitą odpylania spalin w elektrofiltrze (ok. 99%) oraz stężenie całkowite pyłu (ok. 400 mg/m<sup>3</sup><sub>n</sub> wilg.) w spalinach kierowanych do IOS (tabela 6).

Jest oczywiste, że otrzymane wyniki są wartościami średnimi i od nich, w różnych fazach obciążenia kotła oraz zmiany charakterystyki spalanego węgla, uwidaczniają się większe lub mniejsze odstępstwa.

| Nr       | Średnica    | Udział       | Stężenie          | Frakcyjna   |                    | Stężenie          |
|----------|-------------|--------------|-------------------|-------------|--------------------|-------------------|
| frakcji, | przeciętna, | masowy       | frakcyjne pyłu    | skuteczność | $x_i \cdot \eta_i$ | frakcyjne pyłu    |
| i        | $d_i$ (µm)  | frakcji pyłu | na wlocie         | odpylania,  | . ,.               | na wylocie        |
|          | •           | w zbiorze,   | $(g/m_n^3 wilg.)$ | $\eta_i$    |                    | $(g/m_n^3 wilg.)$ |
|          |             | $x_i$        |                   |             |                    |                   |
| 1        | 0,45        | 0,0800       | 3,2               | 0,9300      | 0,0744             | 0,2240            |
| 2        | 1,45        | 0,0450       | 1,8               | 0,9800      | 0,0441             | 0,0360            |
| 3        | 3           | 0,0825       | 3,3               | 0,9860      | 0,0813             | 0,0462            |
| 4        | 5           | 0,1150       | 4,6               | 0,9890      | 0,1137             | 0,0506            |
| 5        | 8           | 0,1875       | 7,5               | 0,9975      | 0,1870             | 0,0187            |
| 6        | 15          | 0,2275       | 9,1               | 0,9985      | 0,2272             | 0,0137            |
| 7        | 30          | 0,1825       | 7,3               | 0,9995      | 0,1824             | 0,0036            |
| 8        | 50          | 0,0400       | 1,6               | 1,0000      | 0,0400             | 0,0000            |
| 9        | 65          | 0,0175       | 0,7               | 1,0000      | 0,0175             | 0,0000            |
| 10       | 85          | 0,0100       | 0,4               | 1,0000      | 0,0100             | 0,0000            |
| 11       | 150         | 0,0075       | 0,3               | 1,0000      | 0,0075             | 0,0000            |
| 12       | 250         | 0,0050       | 0,2               | 1,0000      | 0,0050             | 0,0000            |
|          |             | 1,0000       | 40,0              |             | 0,9902             | 0,3928            |

Tabela 6. Frakcyjna i całkowita skuteczność odpylania spalin w elektrofiltrze

Największy udział w pyłach występujących w spalinach kierowanych do absorbera IOS mają cząstki najmniejszych rozmiarów (cząstki o średnicach poniżej 1,45 μm – tabela 6 frakcje nr 1 i 2 stanowią ponad 66% pyłu za elektrofiltrem), które z uwagi na mały efekt inercyjnego wydzielania na powierzchni kropel i niewiele znaczący efekt zaczepienia w warunkach rozpylania w absorberze cieczy na krople o dużych średnicach (średnica Sautera kropel w absorberze IOS jest większa od 2 mm) trudno ze spalin usunąć [4-6]. Trzeci mechanizm, umożliwiający usuwanie cząstek pyłu ze spalin kotłowych w skruberach, zwany mechanizmem dyfuzyjnym (opartym na dyfuzyjnych ruchach Browna oraz termo- i dyfuzjoforezie), jest istotny dla cząstek bardzo małych rozmiarów – poniżej 0,5 μm [7].

W przypadku odpylania spalin w skruberze natryskowym IOS ten mechanizm dla usuwania cząstek najliczniej występujących w spalinach przed IOS (tabela 6, frakcja nr 1,  $C_p=0,224 \text{ g/m}_n^3 \text{ sp. wilg.}$ ) może mieć istotne znaczenie. W teorii i praktyce duże znaczenie ma kondensacja pary wodnej na cząstkach aerozolowych. Prowadzi ona do zwiększenia rozmiarów cząstek submikronowych, wskutek czego zwiększa się skuteczność ich wydzielania ze spalin [7].

Zależność frakcyjnej skuteczności odpylan1a spalin w elektrofiltrze przedstawiono na rys. 6. Cząstki o średnicy 3  $\mu$ m są w elektrofiltrze usuwane ze skutecznością 98,6%, a o średnicy 5  $\mu$ m ze skutecznością 98,9%.



Rys. 6. Zależność frakcyjnej skuteczności odpylania od przeciętnej średnicy cząstek pyłu

Jak widać, do absorbera IOS przedostają się cząstki o rozmiarach do 30  $\mu$ m, a zatem takie cząstki, które nawet w procesach mokrego odpylania trudno jest z gazów odlotowych usunąć.

# 7. Odpylanie spalin w skruberze natryskowym

Do analizy efektów odpylania spalin odprowadzanych z 4 bloków wyposażonych w kotły OP-650b, najpierw w elektofiltrach, a następnie w 2 absorberach IOS wykorzystano 17298 wyników pomiarów stężenia pyłów w spalinach przed i za 2 absorberami IOS, które stanowią wartość uśrednioną dla 10 minut. Podczas prowadzenia pomiarów stężenia pyłów parametry pracy absorberów zmieniały się w zakresach podanych w tabeli 8.

| Wartość | W <sub>sp</sub> | T <sub>1sp</sub> | Н     | n    | L/G        | pН    | C <sub>1p</sub>     | $\rho_{zaw}$      |
|---------|-----------------|------------------|-------|------|------------|-------|---------------------|-------------------|
|         | m/s             | °C               | m     | szt. | $dm^3/m^3$ | -     | mg/m <sup>3</sup> n | kg/m <sup>3</sup> |
| Max.    | 4,77            | 192,3            | 18,99 | 4    | 50,43      | 10,31 | 679,8               | 1138,7            |
| Min.    | 0,707           | 132,1            | 15,90 | 2    | 10,88      | 3,40  | 22,1                | 1000,4            |

Tabela 8. Maksymalne i minimalne parametry pracy IOS

W zależności od zaistniałych parametrów pracy IOS i liczby poziomów zraszania spalin w absorberach, uzyskano skuteczność odpylania w zakresie 89,78-99,85%. W niektórych sytuacjach była ona większa od uzyskiwanych w elektrofiltrach przed IOS. Obala to wiarygodność informacji podawanych w podręcznikach i publikacjach naukowych, w których podkreśla się, iż skrubery natryskowe zapewniają skuteczność odpylania nie większą niż 90%.

Zależność skuteczności odpylania od stężenia pyłu w spalinach kierowanych do skrubera przedstawiono na rys. 7, a od prędkości spalin w skruberze na rys. 8. Można

zauważyć, że wraz ze zwiększaniem stężenia pyłu w spalinach przed absorberem zwiększa się skuteczność ich odpylania. Prawdopodobnie wynika to z nasilania się wraz ze zwiększaniem stężenia pyłu efektu koagulacji najmniejszych cząstek. Z przebiegu zależności przedstawionych na rys. 7 i 8 można wnioskować, że wraz ze zwiększaniem prędkości spalin w absorberze zmniejsza się skuteczność ich odpylania.

Przebieg zależności na rys. 8 sugeruje, że istotny wpływ na skuteczność odpylania ma wartość pH rozpylanej w absorberze zawiesiny absorpcyjnej (na którą wpływ ma stężenie zawiesiny, a od której zależy jej gęstość i lepkość-parametry decydujące o stopniu rozpylenia zawiesiny).



Fig. 7. Zależność skuteczności odpylania od stężenia pyłu w spalinach kierowanych do skrubera

Przebieg zależności skuteczności odpylania spalin w skruberze (rys. 7) zależy od stężenia pyłu w spalinach i prędkości spalin.



Rys. 8. Zależność skuteczności odpylania spalin od ich prędkości w skruberze

Z przebiegu zależności na rys. 8 można wnioskować, że istotny wpływ na skuteczność odpylania, oprócz prędkości spalin w, stosunku L/G i ilości uruchomionych poziomów zraszania w skruberze n, ma wartość pH rozpylanej w absorberze zawiesiny absorpcyjnej, co

może sugerować, a nawet potwierdzać fakt, że wartość pH zawiesiny absorpcyjnej wpływa na rozpuszczanie w niej cząstek pyłu.

Na podstawie wielokrotnej regresji danych otrzymano opisujące skuteczność odpylania spalin w absorberze równanie korelacyjne w postaci

$$\eta_{odp} = 1 - e^{\left[ (-1) \cdot w_{sp}^p \cdot \mathbf{C} / G \not \rightarrow H^r \cdot n_{p.z}^s \cdot e^{\mathbf{A} \cdot pH + B \cdot C_{1p} + C \cdot \rho_{zaw} + D \cdot T_{2sp} \right]}$$

gdzie: *w*<sub>sp</sub>

prędkość spalin wilgotnych na wylocie z absorbera w warunkach rzeczywistych, m/s,

- L/G stosunek strumienia objętości rozpylanej w absorberze zawiesiny absorpcyjnej do strumienia objętości spalin wilgotnych na wylocie z absorbera (ang.: liquid to gas ratio), dm<sup>3</sup>/m<sup>3</sup>.
- *H* wysokość strefy zraszania spalin w absorberze, m,
- $n_{p.z}$  ilość pracujących poziomów zraszania w absorberze,
- *pH* wartość *pH* rozpylanej w absorberze zawiesiny absorpcyjnej,
- $C_{1p}$  stężenie pyłu w spalinach na wlocie do absorbera odniesione do warunków normalnych, mg/m<sub>n</sub><sup>3</sup> wilg.

 $\rho_{zaw}$  – gęstość zawiesiny absorpcyjnej, kg/m<sup>3</sup>,

T – temperatura spalin przed absorberem, °C,

A, B, C, D – stałe,

*p*, *q*, *r*, *s* – wykładniki potęg.

Ze zrozumiałych względów (zachowanie tajemnicy handlowej, wyniki badań stanowią własność RAFAKO S.A.), występujące w równaniu współczynniki regresji nie mogą być podane.

Maksymalne odchylenie obliczonej skuteczności odpylania od zmierzonej wynosi +2,86 i -2,37%, a średnie: +0,92 i -0,75%. Świadczy to o bardzo dobrym dopasowaniu równania regresji do rzeczywistych (zmierzonych) skuteczności odpylania spalin w absorberze IOS.

### 8. Wnioski

Odpylanie spalin kotłowych w krajowych elektrowniach i elektrociepłowniach nie wyposażonych w instalacje półsuchego lub mokrego odsiarczania spalin prowadzi się tylko w elektrofiltrach (jeden stopień odpylania). Jeśli spaliny kotłowe odsiarcza się metodą półsuchą, spaliny odpyla się najpierw w elektrofiltrach, a następnie w filtrze workowym, umieszczonych za reaktorem procesowym odsiarczania (występują 2 stopnie odpylania suchego), a w przypadku stosowania mokrych metod odsiarczania spaliny odpyla się najpierw w elektrofiltrze, a następnie w absorberze IOS (w 1. stopniu odpylanie suche, w 2. stopniu odpylanie mokre).

W wielu obiektach energoelektrycznych stosowane elektrofiltry są wyeksploatowane i przestarzałej konstrukcji, dlatego charakteryzują się małą skutecznością. Należy je modernizować lub wymieniać na nowe o dużej skuteczności odpylania. W przypadku dwustopniowego odpylania spalin – najpierw w elektrofiltrze a następnie w absorberze IOS, uzyskuje się dużą całkowitą skuteczność odpylania nawet wtedy, gdy elektrofiltr pracuje z małą skutecznością (np. 90%). Wtedy do absorbera IOS przedostaje się duży ładunek pyłu o małych cząstkach, zawierających substancje mineralne w postaci tlenków, przede wszystkim SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub> i CaO.

W warunkach kwaśnego odczynu zawiesiny absorpcyjnej w rząpiu rozpuszcza się tylko CaO, natomiast pozostałe tlenki migrują w następujących po sobie procesach odwadniania

gipsu syntetycznego do produktu końcowego-CaSO<sub>4</sub>·2H<sub>2</sub>O o zawartości wilgoci do 10%, powodując w mniejszym lub większym stopniu jego zanieczyszczenie. W krańcowym przypadku mogą nadać mu cechy odpadu, a nie produktu nadającego się do gospodarczego wykorzystania.

Mimo, że w składzie granulometrycznym pyłów występujących w spalinach kierowanych do IOS dominują cząstki submikronowe (tabela 6, frakcja nr 1), w absorberze są one wydzielane ze spalin z dużą skutecznością (93%). Dzieje się to nie w wyniku działania siły inercji cząstek zmierzających do kropel cieczy (jest ona istotna dla cząstek o rozmiarach większych od 1  $\mu$ m) i nie w wyniku działania efektu zaczepienia cząstek na kroplach, lecz w wyniku dyfuzyjnego wydzielania cząstek na pojedynczych kroplach wskutek dyfuzyjnych ruchów Browna, termo- i dyfuzjoforezy oraz kondensacji pary wodnej na cząstkach aerozolowych, prowadzącej do zwiększenia ich rozmiarów (cząstki aerozolowe są zarodkami kondensacji) [7].

Kondensacja pary wodnej w absorberze IOS zachodzi w wyniku odprowadzenia ciepła z układu aerozolowego oraz konwersji energii wewnętrznej układu w inną postać energii, czyli: rozprężenia adiabatycznego spalin w absorberze w wyniku zmniejszenia prędkości spalin w absorberze przez zwiększenie przekroju przepływowego po wlocie spalin do absorbera oraz zmniejszenia w absorberze strumienia objętości spalin w wyniku adiabatycznego ich schłodzenia podczas kontaktu z cieczą absorpcyjną.

Opracowane równanie korelacyjne pozwala z dużą dokładnością określać skuteczność odpylania spalin w absorberze IOS dla wielu parametrów zmiennych występujących podczas procesu odsiarczania spalin metodą mokrą wapienną

### Literatura

- 1. Antes T., Nycz R.: Wpływ instalacji odsiarczania spalin na pracę instalacji odpylających. Mat. konf.: Technologie odsiarczania spalin. Słok k. Bełchatowa,10-11 marca 2005.
- Kucowski J., Laudyn D., Przekwas M.: Energetyka a ochrona środowiska. Wyd. II zmienione i rozszerzone, WNT, Warszawa 1993.
- Ratajczak T., Gaweł A. i in.: Charakterystyka popiołów lotnych ze spalania niektórych węgli kamiennych i brunatnych. W: Masy popiołowo-mineralne i ich wykorzystanie w górnictwie węglowym. Polskie Towarzystwo Mineralogiczne, Prace Specjalne, 1999, z. 13.
- 4. Friedlander S.K.: Smoke, Dust and Haze. Fundamentals of Aerosol Behavior. London. J. Wiley 1977.
- 5. Lancaster B.W., Strauss W.: Condensation Effect in Scrubber. Air Pollution Control. Part 1, Ed. W. Strauss, N.Y. J. Wiley and Sons 1971.
- Shaw D.T.: Fundamentals of Aerosol Science. Ed. Shaw D.T., New York, J. Wiley, 978
- 7. Goldsmith P., May F.G.: Aerosol Science. Part VII, ed. C.N. Davies. Academic Press, New York 1966.